点击下载生意通,与百万生意人谈生意!

碳素纤维

相关词条
   碳素纤维又称碳纤维(Carbon Fiber,简称CF)。在国际上被誉为“黑色黄金”,它继石器和钢铁等金属后,被国际上称之为“第三代材料”,因为用碳纤维制成的复合材料具有极高的强度,且超轻、耐高温高压。
  碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。
  侧图为碳纤维布.
  1.由来
  1880年美国爱迪生首先将竹子纤维碳化丝,作为电灯泡内之发光灯丝,开启了碳纤维(Carbon Fiber,简称CF)之纪元。碳纤维用在结构材料,首先问世者,则以美国Union Carbide公司(U.C.C.)为代表,并于1959年将嫘萦纤维为原料,经过数千百度之高温碳化后,得到弹性率约40GPa,强度约为0.7GPa之碳纤维;尔后,1965年该公司又用相同原料于3000℃高温下延伸,开发出丝状高弹性率石墨化纤维,弹性率约500GPa,强度约为2.8GPa。
  另外,于日本大阪工业技术试验所之进藤博士,则以Polyacrylonitrile(简称PAN)聚丙烯腈为原料,经过氧化与数千度之碳化工程后,得到弹性率为160GPa,强度为0.7GPa之碳纤维。1962年日本碳化公司(Nippon Carbon Co.)则用PAN为原料,制得低弹性系数(L.M.)之碳纤维。东丽公司亦以PAN纤维为原料,开发了高强度之CF,弹性率约为230GPa,强度约为2.8GPa,并于1966年起有每月量产1吨之规模;同时亦开发了碳化温度2000℃以上之高弹性率CF,弹性率约400GPa,强度约为2.0GPa。于1965年,群马大学大谷教授,利用加热氯乙烯(Vinyl Chloride)得到之沥青(Pitch),经过熔融纺丝、不融化与碳化工程处理后,得到普通级碳纤维;大谷教授亦可利用木质素(Lignin)为原料制作碳纤维。
  碳纤维之需求量虽逐渐扩大,但1991年以后冷战结束后,军事用途之使用量萎缩,复因泡沫经济与景气萧条,供需失去平衡,产业受到冲击。然而,美国波音公司新锐机型B777之生产,加上土木、建筑、汽车与复合材料之扩大应用,碳纤维产业逐渐缓步成长中。
  2.碳纤维之种类
  经高温处理后,其含碳量超过90%以上之纤维材料,称之为碳纤维。碳纤维之种类分类有许多方法,可依原料、特性、处理温度与形状来分类。若依原料可分为纤维素纤维系之嫘萦(Rayon)系与木质(Lignin)系;聚丙烯腈(Polyacrylonitrile)系;沥青(Pitch)系;酚树脂系与气相碳纤系等六种。若依特性则分为普通碳纤维;高强度高模数碳纤维与活性碳纤维等三种。普通碳纤维之强力在120㎏/㎜2以下,杨氏模数(Young掇 Modulus)在10000㎏/㎜2以下者称之;高强度高模数者,则强力在150㎏/㎜2以上,模数在17000㎏/㎜2以上时称之。
  若依加工处理温度分类时,则可分为耐炎质;碳素质与石墨质等三种。耐炎质碳纤之处理加热温度为200~350℃,可供作电气绝缘体;碳素质碳纤之处理加热温度为500~1500℃,可供电气传导性材料用;石墨质碳纤之处理加热温度在2000℃以上,除耐热性与电气传导性提高外,亦具自我润滑性。
  若按碳纤维制品之形状分类时,可分为棉状短纤维;长丝状连续纤维;纤维束(Tow);织物;毡毯与编制长形物等。
  3.碳纤维之研制
  3.1 嫘萦系碳纤维
  嫘萦纤维素纤维加热处理时不会熔融,若在无氧状态下的不活性气体(Inert Gas)中加热处理,则极易取得碳纤维。
  3.2 聚丙烯腈系碳纤维
  聚丙烯腈(PAN)系碳纤维之制造工程大致可分为聚丙烯腈纤维之制备;安定化工程(耐炎化);碳化工程;表面处理与上浆工程;石墨化工程等五个程序。
  3.3 沥青系碳纤维
  原油经900℃以上之高温提炼后的残渣中,约含有95wt%之碳质,若以电解法去除其中之硫酸,再经水洗后可得纯度极佳之沥青(Pitch)。
  3.4 气相成长碳纤维
  气相成长碳纤维有基材上成长法与流体化触媒成长法两种。将铁、钴、镍等金属微粒(M)加热至1100℃,令乙炔(C2H2)热分解脱氢形成碳素沈积成长于金属微粒下方,形成碳纤维。为基材上成长法之简图,可知其间须喂入氢(H2)气与苯(C6H6)等气体。
  3.5 活性碳纤维
  目前商业化之活性碳的形态有粉末状;颗粒状与纤维状等三种,其中粉末状活性碳(Powdered Activated Carbon,简称PAC),大多由木屑制成,平均尺寸约为15~25μm;颗粒状活性碳(Granular Activated Carbon,简称GAC),大致由煤、沥青粉末制成,平均尺寸约为4~6㎜;纤维状活性碳(Activated Carbon Fiber,简称ACF),则大多由PAN、Rayon、Pitch与Phenolic Resin等纤维制成,平均直径约为7~15μm。
  活性碳纤维之吸着性
  活性碳纤维之特性,其吸着性依原料不同有所差异,其中以日本等国开发之Phenolic Resin系之效果较佳。在溶剂吸着之过程中,首先是表面质传,再于孔洞内扩散,接着活性真吸附与多层吸附,最后形成毛细凝结,故活性碳纤维为一种优良之溶剂吸着材,甚至回收利用。同时对于空气净化、脱色、脱臭、医疗用卫生、防毒面具/口罩、电子材与各项污染防止过滤材等用途皆可广泛利用。
  4.结论碳素纤维每年虽呈小幅成长,但仍具稳定之特殊固定市场性与用途需求性。碳素纤维之用途依国家不同而异,美国主要发展用于国防与航天,而日本则用于运动休闲器材,在未来预期在环保用途将会大幅成长。碳素纤维依产品设计与结合特殊他种材料会展开另一新纪元。
  5.碳纤维之主要用途与比例
  用途 航天/船舰 工业/汽车 运动器材
  国家
  美国 74.40% 13.60% 12.10%
  日本 4.00% 33.60% 62.40%
  碳素纤维可加工成织物、毡、席、带、纸及其他材料。碳纤维除用作绝热保温材料外,一般不单独使用,多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。
  碳素纤维是军民两用新材料,属于技术密集型和政治敏感的关键材料。以前,以美国为首的巴黎统筹委员会(COCOM), 对当时的社会主义国家实行禁运封锁政策,1994年3月,COCOM虽然已解散,但禁运封锁的阴影仍笼罩在上空,先进的碳纤维技术仍引不进来,特别是高性能PAN基原丝技术,即使我国进入WTO,形势也不会发生大的变化。因此,除了国人继续自力更生发展碳纤维工业外,别无其它选择。因此,国外尤其是碳纤维生产技术领先的日韩等国对中国的碳纤维材料及制品的出口一直保持相当谨慎的态度,只有为数很少的中国企业能够与其建立合作关系,拥有其产品的进口渠道。
  目前世界碳素纤维产量达到4万吨/年以上,全世界主要是日本东丽、东邦人造丝和三菱人造丝三家公司以及美国的HEXCEL、ZOLTEK、ALDILA三家公司,以及德国SGL西格里集团,韩国泰光产业,我国台湾省的台塑集团,等少数单位掌握了碳纤维生产的核心技术,并且有规模化大生产。目前在祖国大陆还没有一个年产100t的规模化碳纤维工厂,大多还处于中试放大阶段。值得一提的是我国台湾省的台塑集团,在80代年中期从美国Hitco公司引进百吨级碳纤维生产线,经消化、吸收和配套后得到迅速发展,台塑产量增加很快,但碳纤维质量的提高幅度并不大。
  我国对碳素纤维的研究开始于20世纪60年代,80年代开始研究高强型碳纤维。多年来进展缓慢,但也取得了一定成绩。进入21世纪以来发展较快,安徽华皖碳纤维公司率先引进了500吨/年原丝、200吨/年PAN基碳纤维(只有东丽碳纤维T300水平),使我国碳纤维工业进入了产业化。随后,一些厂家相继加入碳纤维生产行列。据不完全统计,目前,我国已有12家生产规模大小不一(5~800吨/年)的PAN基碳纤维生产厂家,合计生产能力为1310吨/年,产品规格为1K、3K、6K、12K。但由于一些企业没有原丝可烧,实际国内碳纤维的总产量不足40吨/年,而且产品质量不太稳定,大多数达不到T300水平。可喜的是从2000年开始我国碳纤维向技术多元化发展,放弃了原来的硝酸法原丝制造技术,采用以二甲基亚砜为溶剂的一步法湿法纺丝技术获得成功。目前利用自主技术研制的少数国产T300、T700碳纤维产品已经达到国际同类产品水平。
  随着近年来我国对碳素纤维的需求量日益增长,碳纤维已被列为国家化纤行业重点扶持的新产品,成为国内新材料行业研发的热点。据不完全统计,目前拟建和在建的碳纤维生产企业有11家,合计生产能力为原丝7100吨/年、碳纤维1560吨/年,其中在建企业为4家,合计生产能力为原丝1100吨/年、碳纤维470吨/年。
  尽管我国碳纤维生产发展缓慢,而消费量却一直在逐渐增加,市场需求旺盛。主要用途包括体育器材、一般工业和航空航天等,其中体育休闲用品的使用量最大,占消费量的约80%~90%。我国碳纤维的需求量已超过3000吨/年,2010年将突破5000吨/年。主要应用领域为:成熟市场有航空航天及国防领域(飞机、火箭、导弹、卫星、雷达等)和体育休闲用品(高尔夫球杆、渔具、网球拍、羽毛球拍、箭杆、自行车、赛艇等);新兴市场有增强塑料、压力容器、建筑加固、风力发电、摩擦材料、钻井平台等;待开发市场有汽车、医疗器械、新能源等。
  我国碳纤维复合材料的研制开始于20世纪70年代中期,经过近40年的发展,已取得了长足进展,在航天主导产品(弹、箭、星、船)上得到了广泛应用。近年来,我国体育休闲用品及压力容器等领域对碳纤维的需求迅速增长,航空航天技术的快速发展急需高性能碳纤维及其复合材料等,市场需求更加旺盛。
  为了满足国内市场对碳纤维不断增长的需求,应尽快实现我国碳纤维工业的国产化和规模化。为此,必须加快技术创新,掌握核心技术;加速原丝技术开发,研制高纯度原丝;强化应用研究和市场开发,进一步扩大应用领域。碳纤维在我国大有发展前途,但应总结涤纶等化纤发展的经验教训,避免盲目发展,实现健康发展。
  为了大型飞机的制造和航空航天事业的发展,我国还必须尽快地实现高强中模型碳纤维的产业化。但是,因为高性能碳纤维是发展航空航天等尖端技术必不可少的材料,长期受到以美国为首的巴黎统筹委员会的封锁。虽然“巴统”在1994年3月解散了,但禁运的阴影仍然存在。即使对我国解除了禁运,开始也只能是通用级碳纤维,而不会向我们出售高性能碳纤维技术和设备。因此,发展高性能碳纤维必须要靠我们自己。我国化学纤维工业“十一•五”发展规划中提出了“从以增加数量为主转向大力发展高新技术纤维”,特别是把事关国家产业安全的高新技术纤维材料作为重中之重,而且碳纤维被列为首位,是国家迫切需要短期内突破的高新技术纤维品种,为我国碳纤维的发展创造了条件,我们要抓住这一机遇,自力更生、努力创新,发展具有自己知识产权的碳纤维,以满足不断增长的市场需求。国家“863 计划”以及有关部委都在关心我国碳纤维工业的发展及其产业化步伐,并给予强有力的支持,许多材料专家也扎扎实实的做了许多工作。“十一五”期间,我国又启动了相关“973计划”。相信“十一五”将是我国碳纤维工业产业化的黄金时代。
赞助商链接